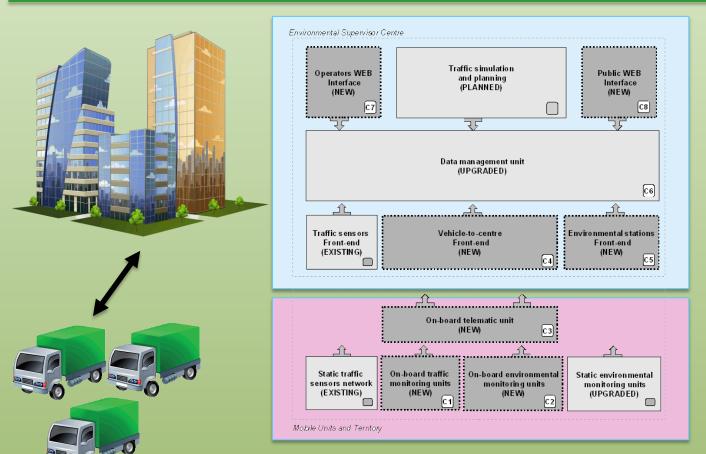


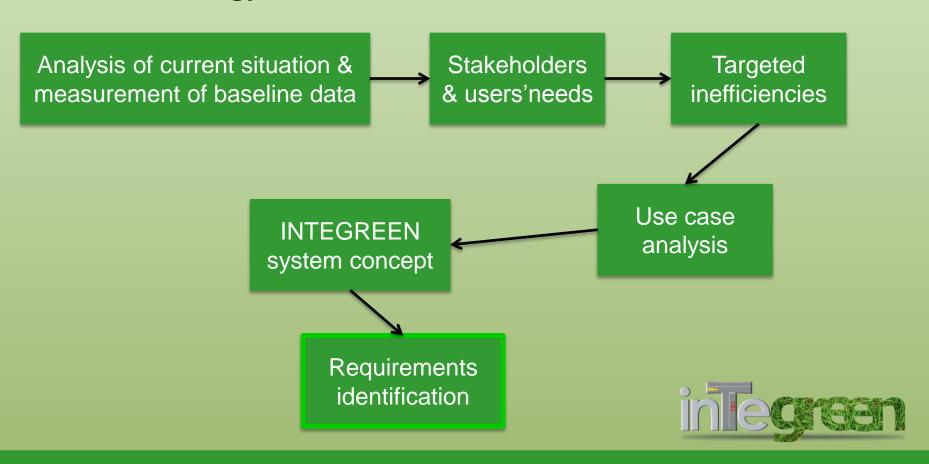
Jenesien

Integration of Traffic and Environmental data for improving green policies in the city of Bolzano

Bozen - Bolzano


Outline

- Analysis of current situation & measurement of baseline data
- Stakeholders & users'needs
- Targeted inefficiencies
- Use case analysis



The methodology

Analysis of current situation & measurement of baseline data

- 1. Geographical scenario and road infrastructure
- 2. Traffic levels and modal split
- 3. Air pollution levels
- 4. Traffic Management Centre of the city of Bolzano
- 5. Environmental Monitoring System in the city of Bolzano
- 6. Baseline data, and preliminary measurement campaign results

INTEGREEN baseline data assessment

How to empirically evaluate the urban traffic inefficiencies, and their impact on the environment?

Length: 8.8 [km]

We tried to measure typical fuel consumptions through FIAT Blue&Me technology on a test city route in different conditions, in order to evaluate the impact of:

- Traffic level
- Traffic lights
- Driving style
- Navigation factor
- Travel time choice
- Meteorological conditions

	Test n/1	Test n/2	Test n/3	Test n/4	Test n/5	Test n/6	Test n/7	Test n/8
Traffic level	HIGH	HIGH	MEDIUM	MEDIUM	MEDIUM	MEDIUM	MEDIUM	HIGH
Time of the day	Morning	Morning	Midday	Afternoon	Afternoon	Afternoon	Afternoon	Evening
Driving style	"Eco-driving"	"Aggressive"	"Normal"	"Eco-driving"	"Aggressive"	"Normal"	"Normal"	"Normal"
Note	-	-	-	-	-	Navigation Factor test	Navigation Factor test	-

Two test sessions:

- n=1
 - □ 15/05 (morning)
 - ☐ 16/05 (afternoon)
- n=2
 - ☐ 21/05 (all day) rainy day

INTEGREEN baseline data assessment

- The tests have allowed to get a first understanding of the contribution of the different factors of interest in the total amount of fuel consumption of typical urban trips in Bolzano.
- In certain situations (for example, high level of traffic combined with an «aggressive» driving style), these values tend to increase very significantly.
- It has been possible to have an empirical evidence of the need to combine routing information with optimal travel times indications.

INTEGREEN baseline data assessment

	Test n.1/1 (High Traffic, 8:00 AM, 15/05/2012)	Test n.2/1 (High Traffic, 8:30 AM, 15/05/2012)	Test n.2/2 (High Traffic, 8:30 AM, 21/05/2012)	Test n.1/2 (High Traffic, 8:00 AM, 21/05/2012)
Travel time (HH/MM/SS)	00.24.28	00.20.43	00.22.45	00.35.30
Fuel consumption (L)	0,604	0,764	0,620	1,180
Stop&Go	23	21	19	61
Note	Eco-driving (Peak Hour)	Aggressive mode	Eco-driving	Aggressive mode (Peak Hour)

- User: actor that is directly interacting with the system, in particular through a specific interface and on the base of a specific application;
- Stakeholder: actor that is not in direct contact with the system,
 but is in some way influenced by it

- Users
 - □ Local travelers
 - Motorized vehicle drivers
 - ✓ Passenger car and light truck drivers
 - ✓ Passenger collective means and heavy trucks drivers
 - Local freight transport planners
 - Road operators
 - Traffic officers
 - Traffic engineers
 - Mobile probe drivers

•	Sta	ke	hol	ders

- ☐ City Council of BZ
- Autonomous Province of BZ
- ☐ Service providers (e.g parking slot remote reservation)
- ☐ Technology providers (e.g. multimodal journey planner)
- Consumers associations
- □ Driving schools and environment protection organizations
- Passenger fleet owners

•	Local	trav	/elers

- «Best» (cost+time) urban travel choice depending on realtime conditions
- □ Travel decision freedom
- Pre-trip and en-route support
- □ Additional information to be taken into account (e.g. parking availability, air pollution levels)
- ☐ Reliable and up-to-date information
- ☐ Good air quality levels in the city
- ☐ Soft and preventive traffic-measures
- Privacy

- Motorized vehicle drivers
 - Congestion avoidance
 - □ Intelligent travel planning (travel time + routing)
 - ☐ En-route information (e.g. at intersections)
 - □ «Real-time» information about traffic event
- Passenger car drivers
 - ☐ Presence of buses in the planned route
- Passenger collective means and truck drivers
 - ☐ Transport service efficiency for client satisfaction maximization

- Local freight transport planners
 - Quality of service & trip decisions
 - ☐ Minimization of environmental footprint and costs (customer parameter choice)
 - ☐ Driving style of drivers
- Mobile probes drivers
 - □ Transparent functioning of on-board monitoring system
 - Minimize driver distraction
 - Minimize on-board driving activities
 - ☐ Reliable & consistent on-board information

 Road o 	perators
----------------------------	----------

- □ Time & space road capacity maximization
- □ Road users safety
- □ Preventive and dynamic traffic control and management
- ☐ Air pollution monitoring and sensitive areas protection
- □ Policies and levels of services based on traveller and vehicle type
- Cooperation with other road operators

,	Traffic officers
	 Clear and exhaustive overview of traffic (and air pollution) situation
	Prevention and early reaction to a traffic / air pollution event
	☐ Real-time traffic and travel information to travelers
	☐ Minimization of complexity and overhead due to the novel system
,	Traffic engineers
	☐ Ex-post evaluations have to be possible
	☐ Reduction of transit travels in residential areas
	Prioritize sustainable mobility means in the city

Stakeholders and users' needs

City Council of Polyana

City Council of Bolzano
■ Maximize road safety
Minimize fuel consumption and emissions
Preserve the right to mobility
Quality of life in residential districts
☐ Sustainable and efficient transport means have to be prioritized
☐ Guarantee optimal city accessibility in any demand condition
☐ Cost/benefit assessment of traffic optimization policies

- Autonomous Province of Bolzano
 - □ Cooperation between municipal and regional TMC
 - Multi-modal approaches have to be further stimulated
- Service and technology providers
 - ☐ Traffic and mobility information distributed by TMC have to be reliable and timely-relevant.
 - ☐ It should be used by 3rd parties for creating new telematic services

- Environment protection organizations
 - ☐ Increase the attention on environment protection in areas like Bolzano
 - Increased awareness of travelers and organizations
- Consumers'associations
 - ☐ Right for mobility
 - ☐ Travelers education right information at the right time, in an easy way

Targeted inefficiencies - pre/trip

Inefficiency ID	Inefficiency	Action / type of intervention	Level of relevance in terms of emission
INEF_01	Inefficient vehicle condition	Awareness-raising campaign, educational activities	Small
INEF_02	Inefficient route choice	Targeted by INTEGREEN system	Medium
INEF_03	Inefficient travel timing	Targeted by INTEGREEN system	High
INEF_04	Inefficient payload	Outside the scope of INTEGREEN	Medium
INEF_05	Inefficient modal choice	Targeted by INTEGREEN system	Medium

Targeted inefficiencies – en-route

Inefficiency ID	Inefficiency	Action / type of intervention	Level of relevance in terms of emission
INEF_06	Inefficient use of electrical energy consumers	Awareness-raising campaign, educational activities	Medium
INEF_07	Inefficient routing	Targeted by INTEGREEN system	High
INEF_08	Inefficient driving	Awareness-raising campaign, educational activities	High

Use case analysis

Use Case ID	Inefficiency	Pre-trip / En-route	Perspective
UC_1	Local travelers planning eco-trip	Pre-trip	Travelers
UC_2	Local transport planners planning eco-trip	Pre-trip	Local transport planner
UC_3	En-route driver information through VMS	En-route	Travelers
UC_4	En-route driver information on-board demonstrator	En-route	Mobile probe drivers
UC_5	Traffic and environmental status assessment: INTEGRATED MONITORING	-	TMC
UC_6	Traffic controllers adaptive coordination: ACTUATION	-	TMC
UC_7	Info-mobility channels supervision: INFORMATION	-	TMC

