

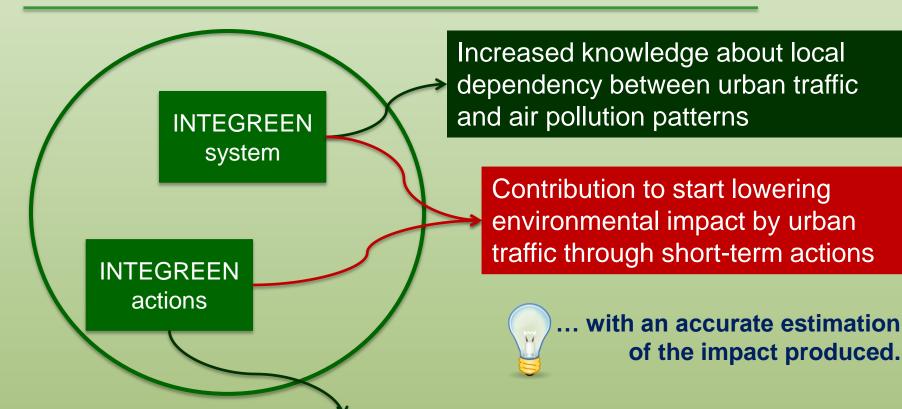
Jenesien

Integration of Traffic and Environmental data for improving green policies in the city of Bolzano

Bozen - Bolzano

Final project workshop 27/02/2015

Table of contents


- Results
- Lessons learned
- Exploitation and future perspectives

Results

Contribution to increased sustainable mobility habits (and culture) by local travelers

1. Collection and integration of a huge amount of data related to local traffic / air pollution conditions

Data type	Availability start	Records amount [nr. records]
Parking	September 2013	> 2 million records
Air pollution / meteorological	December 2013	about 900.000 records
Mobile	February 2014	about 6 million records
Traffic detection	December 2012	> 10 million records

... without considering SASA AVM real-time data, that we don't store.

2. Availability of lots of elaborated information

Elaboration type	Data sources
Average speed Average travel times Nr. of congestion patterns Nr. of speeding records	Traffic detections
Pollutant emissions: CO ₂ , NO _X , PM ₁₀ (and much more)	Traffic detections
Pollutants street level concentrations: mainly NO ₂	Mobile
Traffic-emitted pollutants dispersion	Pollutant emissions + air pollution / meteorological

... current + historical ones (with some limitations).

3. Analyzing patterns – a case study example

Klimahouse 2015

- ✓ One of the most important local fairs
- √ 4 days of exhibitions, demonstrations, tours
- ✓ About 38k visitors + 1.000 workshop participants

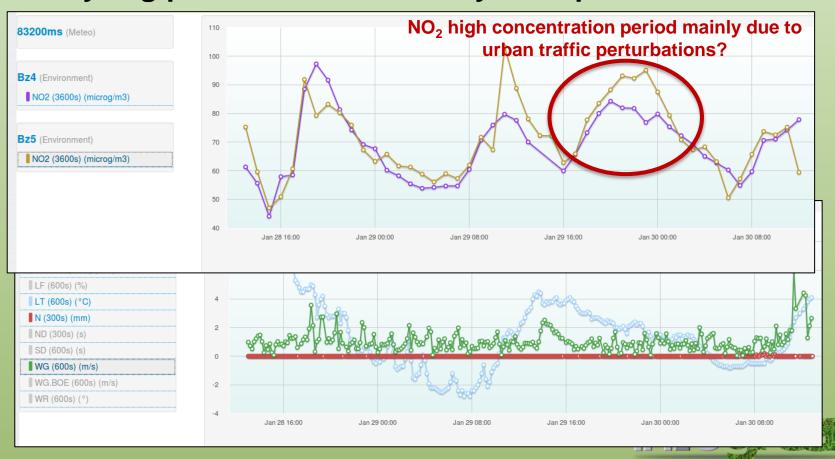
3. Analyzing patterns – a case study example

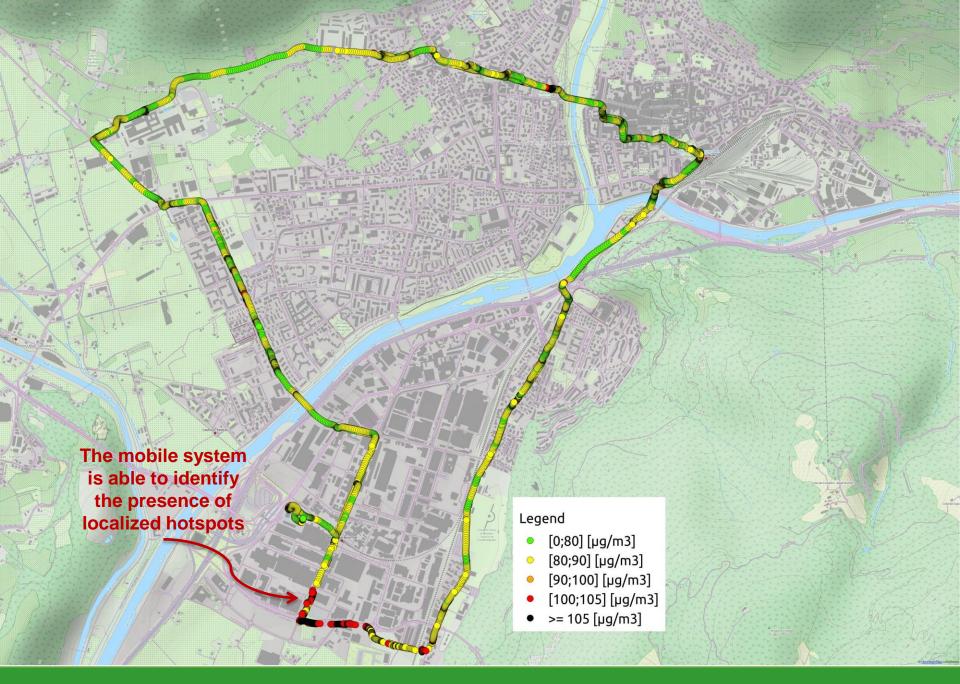
Reference traffic conditions

(one week before the event)

3. Analyzing patterns – a case study example

Thanks to the INTEGREEN system, one could calculate the associated increase of emissions


Congestion patterns (during the event)



3. Analyzing patterns – a case study example

First evaluation of potential of «greening» urban traffic

In theory, given the <u>same vehicular population</u>, it is possible to reduce the environmental impact through:

- ✓ Speed management strategies
- ✓ Traffic control management strategies.
- ✓ Urban navigation strategies
- ✓ Mobility management strategies (mode and time of travel)
- ✓ (Driving management strategies)

First evaluation of potential of «greening» urban traffic

Preliminary results suggest the following potential:

Strategy class	Strategy class Low traffic conditions		
Speed	Medium	Medium	
Traffic control	Low	Medium	
Navigation	Low	Medium	
Mode / Time of Travel	High	High	
Driving*	Medium	Medium	

^{*}based on literature findings, not empirical verified

First evaluation of potential of «greening» urban traffic: a case study example

... any idea of the environmental effects? Does this measure have any effect at all?

Speed enforcement detectors

- ✓ Very (un)popular in the last months in Bolzano
- ✓ Installation completed in the first days of December 2014

Main objective: reduce high transit speeds on the main routes of the city and increase safety of VRUs

First evaluation of potential of «greening» urban traffic: a case study example

Comparison between the 3-months period before the installation (September / October / November 2014) and the month immediately after the installation (December 2014)

- **Druso Street** (3 detectors in series)
- Galilei Street (1 detector)

First evaluation of potential of «greening» urban traffic: a case study example

Indicator	Druso Street (direction city centre)	Druso Street (direction city suburb)	Galilei Street
Average Speed	+ 2%	0%	- 10%
Nr. vehicular detections	- 12%	- 16%	- 11%
Nr. congestion records	- 0.7%	- 0.5%	+ 1.8%
Nr. speeding Records	- 1.4%	- 3.5%	- 6.7%
PM ₁₀ emissions	- 9%	- 9%	- 3%
NO_X emissions	- 9%	- 8%	- 3%
CO ₂ emissions	- 10%	- 10%	- 4%

First evaluation of potential of «greening» urban traffic: a case study example

Conclusion:

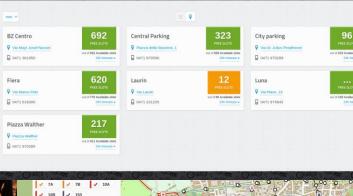
The first reaction to speed detectors by local drivers has produced a on certain streets a non-negligible environmental improvement.

The emissions' reduction is estimated in the order of **5-10%**, and it is probably higher (don't forget that in December we have Christmas market...).

But...

- Will this measure confirm its usefulness in the mid-term period?
- Are drivers really improving their behavior, or just adapting it in front of the detector?
- What about the overall emissions' balance? Are drivers avoiding the monitored routes and producing a higher impact on other stretches?




Result nr. 3: contribution to SUM promotion

The most challenging task!

Combination of:

- ✓ Large-scale events
- ✓ Targeted meetings with focus groups
- ✓ Distribution of mobility information services

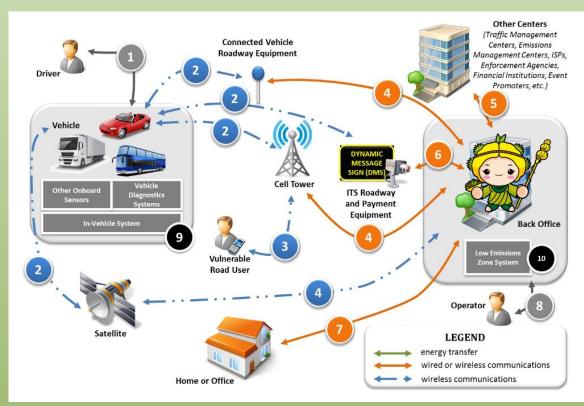
Lessons learned

- INTEGREEN and the cooperation with LIFE program has <u>not</u> been a smooth experience, in particular during its kick-off. But has been a great experience, from a technical and human point of view.
- Today it's INTEGREEN official arrival point. But only formally: today it is
 the kick-off of a new phase in the local mobility agenda. The
 INTEGREEN system will be fed with new data streams and
 continuously increase its capabilities and accuracy for operational use.
- **LIFE** is the right EU instrument for ambitious projects which put at the centre of their target the **environment**. Based on INTEGREEN experience (and tools) we can now increase our ambitions.

.. in which direction?

Exploitation and future perspectives

Towards fully connected scenarios


Towards next-level user engagement

Towards spatially - extended integrated approaches

Technology is the enabler.
Users are the key.

Dynamic Low Emission Zones concept:

Adding rules to access and transit of (pollutant) vehicles, but only when it is really needed.

Source: its.dot.gov

Indirect outcomes

- From stakeholders to partners:
 - contribution to project activities;
 - availability to become partners in future project initiatives.
- From closed to open innovation:
 - research institutes + public administrations + innovation centers linked to market: this can drive the change;
 - small local companies can make the difference even on global markets if they learn to work in cooperation and commend their shared know-how.